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Interplay between noise and boundary conditions in pattern formation in adsorbed substances
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We have studied the interplay between noise and boundary conditions on the possibility of noise induced
pattern formation. With this aim, we have exploited a deterministic model for pattern formation in adsorbed
substances—including the effect of lateral interactions—used to describe the phenomenon of adsorption in
surfaces, where a multiplicative noise fulfilling a fluctuation-dissipation relation was added. We have found
solutions for different boundary conditions, particularly corresponding to two stable and one unstable patterns,
where one of the stable and the unstable one, are purely induced by the multiplicative noise. In the case of
albedo boundary conditions we have found a transition from monostable to a noise induced bistable behavior
as the albedo parameter is varied.
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[. INTRODUCTION possibility of generating noise-induced spatial structures in
During the second half of the 20th century a wealth 0fad_sorbed systems, while.qn the other the interplay between
research results on fluctuations or noise have lead us to tH¥is€ and boundary conditions on pattern formation, we con-
recognition that in many situations noise can actually play ider the same model discussed in 2], but restricted to
constructive role, triggering new phenomena or new forms ofhe€ monolayer case as in R¢lL8] (where all the relevant
order. To name just a few, consider the following examplesdeterministic contributions to the adsorption process, adsorp-
noise-induced transitiorj4], noise-induced phase-transitions tion, desorption, lateral interaction, and diffusion, have been
[2-4], stochastic resonance in zero-dimensional and exincluded, with the addition of a multiplicative noise source.
tended systems[5-8], noise-induced transpor{9,10], The form we adopted here for the noise source is such that a
coupled Brownian motor$l1,12, noise-sustained patterns fluctuation-dissipation relation is fulfille24] (hence avoid-
[13-14. ing the violation of the second law of thermodynamida/e
Regarding the latter phenomenon, that is noise-sustainegkploit the same approach introduced in RERS,26).
patterns, there have been numerous studies on many different |n the following we make a brief description of the deter-
situations. However, both the study of noise-sustained patministic model[18,20], and describe how the indicated mul-
terns in adsorbed substances and the study of the interplaylicative noise is included. Afterwards, we analyze the so-
between noise and boundary conditions are scarce. The profutions for the different cases, that is for the different
lem of phase transitions and ordering phenomena in adsoundary conditions. Finally we draw some conclusions and
sorbed films on crystal surfaces has attracted considerabiiscuss on the possibility of carrying out an experimental
interest for many yearésee Ref[17] for a recent review  observation of the indicated phenomena.
Formation of ordered structures of particles adsorbed on sur-
faces due to mutudlatera) interactions has been observed
in many experiments, originating different types of adsorp-ll. DETERMINISTIC MODEL AND THE MULTIPLICATIVE
tion isotherm[18,19. Strong attractivelatera) interactions NOISE
lead to phase separation with different coverage, characteris-
tic of first order phase transitioi48,19. Recently, a simple
extension of the indicated model was introduced in order to As in Refs.[18-20, we adopt a continuous description
qualitatively describe multilayer adsorption and the forma-for the surface, and characterize the adsorptive species
tion of ordered structurg®0]. This was motivated by that it through evolution equations f@&(x,t), the local coverage at
is experimentally well known that adsorption on surfaces ighe surface. We consider a system that extends within the
not only restricted to the formation of monolayers, but ratherrange +/2<x<L/2, an impose the chosen boundary con-
a second layer can condensate on the first one, a third on thiitions atx=+L/2. The adsorptive term is characterized by
second, and so ofi21]; with numerical simulations also the constank, and the adsorption is only possible at the
showing similar result§22]. (1-C) free sites. Hence, the adsorption ratekjp(1-C),
In this work, inspired by the experimental and theoreticalwherep is the partial pressure of the gaseous phase.
results in Ref[23], and in order to analyze on one hand the  The desorption process has a rigjethat includesg o, the
desorption of noninteracting particles, and the corrections
due to the lateral interactions. The strong local bond induced
*Electronic address: wio@ifca.unican.es; also at Centro Atémicdy the interactionU(x), corrects the desorption rate &g

Bariloche and Instituto Balseiro, San Carlos de Bariloche, Argen=Kgyoexd U(x)/kT], wherek is Boltzmann constant ariflis
tina. the temperature. According to the form we use to introduce

A. The deterministic model
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such an interaction, we are assuming that it sustratum Hence, this problem may be visualized as a reaction—
mediatedinteraction[18-20. diffusion system being the reaction tetC) and the effec-

The gradient ofJ(x) produces a forc&=-dU(x)/dx, that  tive diffusion coefficientDy4(C). For some region of the
affects the adsorbed particles inducing a veloaitybF, parametersy and e this system is bistable with two homo-
where b is the mobility (given by Einstein’s relatiorb  geneous solution indicating that the adsorbate may be
=D/KT, with D the diffusion coefficient The associated par- present in two different coveragd8]. In this region the
ticle flux is vC. Because the flux is only possible to thle  effective diffusion coefficient is negative. We worked with
-C) free sites, its form results to be £<0.4, to assure thabys(C)>0 always, ande>0.14 in
order to be outside of the bistable region.

oU
j=- ( )C(l C) (X)
KT B. Multiplicative noise
while the diffusive flux is given by Equation(5) may be written in a variational form as
. —_p* iC 1 sv[C]
Jait =" o Y (M)
dr  Den(C) 0C(¢)
The evolution equation for the coverage is where the potential functional[C]
J
—C(x,1) =kap(1 = C) — kq oC exd U(X)/KT M c
ot ( ) ap( ) kd,O F[ ( ) ] V[C]:f dg(_f dc’ Deﬁ(cr)f(cr)
_§M 0
D dU(x) &C
(k C1-0)+ ) (1) 1
T S +S[Der(C)iCT |, (8)

For the functional form ofJ(x) we assume an attractive
(and as indicated earlier, substratum-mediatedtential is a Lyapunov functional for the deterministic dynamics.
among the particles separated a distantbat we denote by The starting point of our stochastic analysis will be Eq.

u(r). The potential acting on a particle locatedras (5) with the addition of a multiplicative noise. We introduce
it here in anad hocform. However, a realistic analysis will
u(r) = -f u(r —r")C(r')dr’. 2) require to indicate what parameter is the one that fluctuates,
and the resulting associated form for the noise term. We as-

The integration domain is the whole surface. The functiorSUMe that, in the Stratonovich interpretation, it is given by

u(r) depends on the nature of the system. If the interaction JC 1 &V[C]
radius is small compared with the diffusion length, and the -0 (C) oC(® +9(C)n(é 1), 9
coverage is not much affected by variations in this radius, we eff
can approximate where 7 is a Gaussian white noise, that is with zero mean
and correlation (n(&, 1) (&, 7)=20%8(é-¢")8(r—7'). For
u(r) = f u(r —r")C(r")dr’ = ugC, Whereuozf u(r)dr. the coefficient of the noise termy(C) we adopt

® 6(C)= ——, (10
To simplify the notation we scale the variables as follows: VDerl( )
E=x/Lg (and &y=L/2Lg;), with the diffusion lengthL g in order to guarantee that the fluctuation-dissipation relation
=(D/Kg )% 7=t/ty, with t4=1/kyq0; and e=uy/KT, repre- s fulfilled [24]. As we are considering the Stratonovich in-
sents the lateral interaction. We also defirrek,p/ky o, char-  terpretation, the stationary solution of the associated Fokker-
acterizing the coverage in equilibrium whéix) becomes Planck equation may be written §25]
zero. The evolution equation f@ (&, 7) reduces to

Ps{C] ~ exp(- Vi Cllo?), (12)
Z—C =a(l-C)-Cexd-eC]l+ (9%([1 -Ce(1- C)]%) ) where the effective potentidd.«[C] is given by
r
4 fu
) Ve[ C] = V[C] -\ J d¢ N Dey(C). (12
This equation may be written as b
oC Here \ is a renormalized parameter relatedatdhrough i
—=f(C)+ ( Dex(C) ) (5) =0?/(2A¢) in a lattice discretization, wher&¢ is the lattice
a7 9 parametef25].
with The extreme oW corresponds to théstationary noise-

_ sustained structure3; that can be computed from the equa-
f(€)=a(1-C)-Cexf-eC] tion that results making the first variation W§(C) respect

De(C)=1-Ce(1-C). (6) to C equal to zero, that is
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FIG. 1. (a) F¢4(C) vs C for «=0.2 ande=3.1. Dashed line for
the reaction term with foh=0.0 (monostablg dotted line for\
=0.001 (still monostablg, and full line for \=0.005(bistable.

FIG. 2. Stationary patterns of the problem. We shGyy (full
line) andCyoun, (dashed ling both stable patterns; and the unstable
(saddle C, (dotted ling; all nonhomogeneous. Here we haxe
; =\~ 0.005, while the other parameters values are the same as in
M Fig. 1.
é\/eff[cst] == f Deff(c){é’g[Deff(C)&gc]
¢ . . .
. B (and also imperfegtadsorption at the boundaKpirichlet),
+ Fer(C)}0C(8)dé|c=c = 0, (13)  perfect reflectionNeumann, and mixed or partially reflect-
where ing boundary conditiongalbed9.

d

1
2

De(C)"dC The usual case of Dirichlet boundary conditions corre-
is the effective nonlinearity which drives the dynamics of thesponds to adoptin€(—&y) =C(éy)=a (with a a constant
noise induced patterns. wherea=0 ora+ 0. As is well known, the former situation

As indicated before, we will consider a finite one dimen- corresponds to having a perfect absorber at the boundary,
sional system, i.e., limited to the regiongr=é<é§y  while the latter corresponds to a case where some source is
(-L/2<x<L/2); and consider parameter’s values that as4ntroduced at the boundary. We start here assuming the case
sure a monostable dynamics wib;>0 (for £e<4.0 and  with sources at the boundary wi(—¢&y)=C(éy)=0.5, and
a>0.14) in absence of noisgsee Fig. 1 and E(6)]. Then  postpone the analysis of the case of perfect absorption.
the effective spatial diffusivityD¢+(C) induces an effective The patterns that we obtain as solutions, correspond to the
bistable dynamics when a multiplicative noise for which theextreme of the effective potentis[C] (that is the maxima
fluctuation-dissipation relation is fulfillef4] is added(see  of the probability density In order to obtain their form, we
Fig. 1). However, for\ too small the bistability may even not must(numerically solve
appear. This means that a threshold exist beyond which the
dynamics is bistable. The effective diffusion coeffici@n d
vs C is always positive fore <4 and describes a parabola dé
with a minimum inC =0.5, implying that the effective diffu- for a stationary regimen profil€.(£). This approach allows

sivity Is Iarger when the coverage departs from this value. Inus to find both, the stable and unstable solutions. To analyze
this case it could be necessary to resort to an extended d

scription where a multilayer system is considef2d]. How- fheir stability we need to calculaté®V.y, that defines
P . yersy ; : a Sturm-Liouville problem, with orthogonality weight
ever, such a case is beyond the scope of this work.

It is worth remarking here that for the deterministic prob- Dei(Cs). From the_ analysis it results that, fok=0
lem the reaction term is monostalile=0) while, as we in- (monostable dynam|¢_swe have one stabléCaowr) nonho-
crease the noise intensity, and only due to the effect of nois hggue:iealésrggpqg?etg;c n%ar:lti?w?altr;g;h?(rce:?f nI:Ser?cgn?cl)rrn)\um n
the effective nonlinear ternfr.4 becomes bistabléfor N\ q ' '

larger than a thresholdHowever it is also necessary that the larger than a certain threshold we come to a bistability r_egion
lateral interaction be present, otherwise the effective nonlin¥Vhere we fpund two.stable. nonhomogeneous symmetric pat-
ear term will not be bistable. terns,C,,, with a maximum in the upper root of the nonlinear

termF¢4(C), andC 4oy, With @ minimum in the lower root of
the same nonlinear term; together wit, the unstable so-
IIl. DIEFERENT BOUNDARY CONDITIONS lution (_sad.dle}. The typical form of these patterns is illus-
trated in Fig. 2.
Here we analyze the patterns arising for three different It is convenient to clarify that the difference between
boundary conditions. We will consider the case of perfectCqy,,, With and without noise is due to the fact that the

Fer(C) = f(C) + ) Dei(C), (14) A. Dirichlet boundary conditions

d
(Deﬁ(cst)d_gcst) + Feﬁ(Cst) =0, (15
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FIG. 4. Nonequilibrium potentiaV/e4Csl, as a function of\,

FIG. 3. Stationary patterns of the problem. We shoyy, (full evaluated on the stationary patterns, full line correspondS,tp
line) andC yown (dashed ling both nonhomogeneous stable patternsdashed line corresponds @y, While the dotted line corresponds
for different values ofx, increasing from bottom to to,, and  to Cy. The arrow indicates the point wheW{ Cupl=Ver{ Caownl;
from top to bottom Cyoun (A=0.0015, 0.0020, 0.0030, 0.0040, corresponding ta.=\.~0.005.

0.0050, and 0.0060while the other parameter values are the same
as in Fig. 1. corresponds to the lower root of the nonlinear term with
noise (it cames from the same previous root that has been

unique root off(C)=0 changes for effect of the noise. That o . ; : .
is, g is the sam(e Lattern mgdified by the effect of the noise.mOOIIerd by the noise We observe that in this case there is

However,C,, is a new pattern that is purely induced by the no phase-transition-like phenomenon induced by noise. The

noise. Figure 3 depicts the stable patterns for different valueQther pattern that arises in the previous case, corresponding

of \. We can observe those patterns have a strong depelf2 the other root—'the upper one™—that would indicate a
dence on the noise intensity (also the unstable one, not Phase transition induced by noise, is not a solution.
shown in the figure For \ too large, the solutiorC,, is
larger than one, an€ 4, is below zero, for the centra]
values. This result has no physical meaning, as the coverage
should be normalized to one. In this case, the modifso- Neumann boundary conditions, defined by
chasti¢ model does not represent a real physical situation

anymore. It could maybe correspond to a transition from d d

monolayer to multilayer adsorption as described in IR2f], &—§C(§: —&w) = %C(fz &) =0,
that we will not consider here.

Figure 4 shows/e4{Cy] vs A, evaluated on the different corresponds to the case where the current through the bound-
stationary patterngwe define). as the value ok where s is zero, that is perfect reflection. In this case, without
Vel Cupl = Verl Caounl)- Here we see how the stable solution pyise e have as solution a stable homogeneous pattern with
Cyp is approached by the unstable solutiGg until both 4 \aye given by the root diC)=0. When the multiplicative
coalesce and onlf o, SUrvives as the noise intensit)  ngjse is included we find two new stable homogeneous so-
threshold is reached from above. These results induce tQtions now with values at two of the roots &6.(C)=0
fchir?k on the _pos_sibility of stochastic resonance between thﬁhose where the slope .(C) is negativé. There is also
|n(_1||cated_ r_u_mse_-mduceq structurgat]. We hgve analyzed another roofwhere the slope oF.4(C) is positive, corre-
this possibility, introducing a weak external signal to rock theSponding to a homogeneous saddle
potential [26], and found that the typical maximum in the Again in this case, the homogenéous pattern correspond-
curve of the signal-to-noise ratio as a function of parameter ing to the lower root ’oFeﬁ(C) is the same solution that for

1 o )
results to be too small~10""%) making irrelevant its study. the case without noise, again modified by effect of the noise,

Let us now go back to the cas&(—&y)=C(éy)=0, cor- hile th dina to th tonl ists d
responding to have a perfect absorber at the boundary. In th\{% tlhee p?ezgifgré?fﬁgzégge_o © Upperroot only exists due

case, for=0 (monostable dynamics without nojseas be-
fore, we have a single pattern, but showing a maximam
the unique root of the nonlinear tejnimstead of a minimum C. Albedo boundary conditions
as in the previous case. Clearly this is due to the change of
the boundary condition. Hence, in the region where the dy-
namics was previously bistab{by effect of the noisg even

for larger values oh there is also only one pattern, different iC(gz - &) =KC(- &)
from the one arising without noise, since now the maximum o0& M M

B. Neumann boundary conditions

These conditions correspond to
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FIG. 5. Stationary stable patterns of the problem for different FIC- 6. Stationary stable patterns of the problem Kor0.03,
values ofK. We showC,, (aboveC=0.5) with K increasing down- with and l""thO“t noise. We show,, (aboveC=0.5) and Cd_own
wards(K=0,K=0.01, andK=0.03, respectively andC gy, (below (below C=0.5 for A=\c=0.005 (full line) and Cqoun for A=0.
C=0.5 with K increasing downwards todk=0, K=0.01, K (dashed ling The other parameters values are the same as in Fig. 1.
=0.03, K=0.05, andK=«, respectively. Here we havex=X\.
~0.005, while the other parameters values are the same as in Fig. ditions on the possibility of noise induced pattern formation,

we add a multiplicative noise in such a way that a

P fluctuation-dissipation relation is fulfillel®24], and found the

—C(é=¢y) =—KC(&y), exact stationary solution of the Fokker-Planck equation cor-

23 responding to such a system.
whereK is the albedo parameter, assumed positive. When We have explored different boundary conditididrich-
K=0 we have Neumann’s conditions; while fer=x, we let, Neumann, and the more general albefdo the modified
recover Dirichlet’'s condition$C(-&y)=C(&y)=0]. model and have shown that when a source is introduced in
both extremes, & K <. The stable solutions are shown in that the current is different from zefalbedo parameter be-
Fig. 5. We see that for values &f smaller than a critical 0w a critical valug a phase transition induced by noise oc-
value (K.=0.03)), there are two stable patterrBy,,,, and  Curs. In other words, when the multiplicative noise intensity
Cup With @ maximum that corresponds with each one of thed0€S not exceed a certain critical value, the system has a
two roots of Fe(C)=0, those where the slope is negative. u_nlque_sta_ble pattern as solution. _E’_>ut, when t_he mu_lt_lpl|ca-
Hence, aboveK,, the critical value ofK, only one stable tive noise intensity exce_e_ds the crltlca[ value, in addition to
pattern is foundCy,,), With a maximum corresponding to the previous patterimodified by the noise the system has

the smaller of the roots df.(C)=0. As before,C,, is in-
duced by the noise whil€,, is only modified by it. ]
We observe that a phase transition induced by noise only  0.45+
exists forK larger than the critical valu&.. In Fig. 6 the 0.40
stable solutions forK=0.03 with and without noise are
shown. While for the first case two patterns exist, for the ]
second there is only one. The same is shownKfel0.05 in 0.301
Fig. 7 where, for both cases, with and without noise, only ~ .25
one pattern exists.

0.50 4

0.351

0.20]

0.15-
IV. CONCLUSIONS 010
We have studied a simple deterministic model able to de- ¢ 5]
scribe qualitatively pattern formation in a monolayer of ad- 1
. . . H 000 T T T T T T T T T T T T T T T T T
sorbed particles on surfaces with lateral attractive interac- 8 6 4 2 0 2 4 6 8
tions[19,20. This model leads to the formation of interfaces &

separating phases with different loéAbmogeneouyscover-

age for certain region of parametdrk9]. We have chosen FIG. 7. Stationary stable patterns of the problem Kor0.05,

the parameters’s values outside this region, where the systegith and without noise. We sho®q,,, for A=\.~0.005(full line)

has only a monostable solutidhomogeneous coveragén  andCgyq,, for A=0. The other parameters values are the same as in
order to study the interplay between noise and boundary corFig. 1.
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another stable pattern as solution, with a nonhomogeneou ',\.

(unstable saddle separating both stable ones. It is worth re- 0.8 T TT————
marking here that the second pattern arises abruptly, resen

bling a transition of the of first order type. Moreover, it is the
multiplicative noise that induces this second pattes well 0.6
as the unstable oneAs indicated before, without multipli-

cative noise the solution corresponds to a unique pattern. WH

note that the necessary noise intensity is very small. In the 0.4
other extreme, when the noise intensity is too large, the cov-
erage escapes from the intery@l| 1), and the results of the 02
applied monolayer model loses its physical meaning. This ™
case could correspond to a situation where it is necessary t 1 K
resort to an extended description where a multilayer systen ) S —
is considered 20]. However, such a case was beyond the 0.00 0.01 0.02 0.03 0.04 0.05
scope of this work. K
To better visualize the indicated phase transition, we con- ¢
_S'der again Fig. 5 and in Fig. 8 we pIBLC] vs K, whereH FIG. 8. H vsK for the same values of the parameters as in Fig.
is some measure of the pattern size. Here we choose 5. We showH(C,p) (for H>0.5) andH(Cgouy) (for H<0.5).
H[C]= fuz dxC(X) a too fine tuning cont_rol is required by the at_JQve indicated
e ' interplay between noise and boundary conditions on noise

induced pattern formation, it could be beyond the possibili-
It is apparent that foK > K.~ 0.031, the pattern indicated by ties of such experimental systems. Another—maybe more—
C,p disappears abruptly, while the other stable patt€gg,,  accessible possibility is to consider electronic experimental
remains. This indicates a kind of first order phase transitiorsetups as has been used, for instance, for studying pattern
(or “subcritical-like bifurcation). formation and propagation, as well as some noise induced

An interesting point to be discussed is the possibility ofphenomen29].

carrying out an experimental observation of the above indi-
cated phenomenon. It is known that up to a certain point it is ACKNOWLEDGMENTS
possible both to control and vary the boundary conditions in  One of the authoréH.S.W) acknowledges partial support
chemical pattern forming experimerj&7], as well as to in-  from ANPCyT, Argentine, and thanks the European Commis-
troduce fluctuations in a controlled w§£3,28. However, if  sion.
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