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We have studied the interplay between noise and boundary conditions on the possibility of noise induced
pattern formation. With this aim, we have exploited a deterministic model for pattern formation in adsorbed
substances—including the effect of lateral interactions—used to describe the phenomenon of adsorption in
surfaces, where a multiplicative noise fulfilling a fluctuation-dissipation relation was added. We have found
solutions for different boundary conditions, particularly corresponding to two stable and one unstable patterns,
where one of the stable and the unstable one, are purely induced by the multiplicative noise. In the case of
albedo boundary conditions we have found a transition from monostable to a noise induced bistable behavior
as the albedo parameter is varied.
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I. INTRODUCTION

During the second half of the 20th century a wealth of
research results on fluctuations or noise have lead us to the
recognition that in many situations noise can actually play a
constructive role, triggering new phenomena or new forms of
order. To name just a few, consider the following examples:
noise-induced transitionsf1g, noise-induced phase-transitions
f2–4g, stochastic resonance in zero-dimensional and ex-
tended systemsf5–8g, noise-induced transportf9,10g,
coupled Brownian motorsf11,12g, noise-sustained patterns
f13–16g.

Regarding the latter phenomenon, that is noise-sustained
patterns, there have been numerous studies on many different
situations. However, both the study of noise-sustained pat-
terns in adsorbed substances and the study of the interplay
between noise and boundary conditions are scarce. The prob-
lem of phase transitions and ordering phenomena in ad-
sorbed films on crystal surfaces has attracted considerable
interest for many yearsssee Ref.f17g for a recent reviewd.
Formation of ordered structures of particles adsorbed on sur-
faces due to mutualslaterald interactions has been observed
in many experiments, originating different types of adsorp-
tion isothermf18,19g. Strong attractiveslaterald interactions
lead to phase separation with different coverage, characteris-
tic of first order phase transitionsf18,19g. Recently, a simple
extension of the indicated model was introduced in order to
qualitatively describe multilayer adsorption and the forma-
tion of ordered structuresf20g. This was motivated by that it
is experimentally well known that adsorption on surfaces is
not only restricted to the formation of monolayers, but rather
a second layer can condensate on the first one, a third on the
second, and so onf21g; with numerical simulations also
showing similar resultsf22g.

In this work, inspired by the experimental and theoretical
results in Ref.f23g, and in order to analyze on one hand the

possibility of generating noise-induced spatial structures in
adsorbed systems, while on the other the interplay between
noise and boundary conditions on pattern formation, we con-
sider the same model discussed in Ref.f20g, but restricted to
the monolayer case as in Ref.f18g swhere all the relevant
deterministic contributions to the adsorption process, adsorp-
tion, desorption, lateral interaction, and diffusion, have been
includedd, with the addition of a multiplicative noise source.
The form we adopted here for the noise source is such that a
fluctuation-dissipation relation is fulfilledf24g shence avoid-
ing the violation of the second law of thermodynamicsd. We
exploit the same approach introduced in Refs.f25,26g.

In the following we make a brief description of the deter-
ministic modelf18,20g, and describe how the indicated mul-
tiplicative noise is included. Afterwards, we analyze the so-
lutions for the different cases, that is for the different
boundary conditions. Finally we draw some conclusions and
discuss on the possibility of carrying out an experimental
observation of the indicated phenomena.

II. DETERMINISTIC MODEL AND THE MULTIPLICATIVE
NOISE

A. The deterministic model

As in Refs. f18–20g, we adopt a continuous description
for the surface, and characterize the adsorptive species
through evolution equations forCsx,td, the local coverage at
the surface. We consider a system that extends within the
range −L /2,x,L /2, an impose the chosen boundary con-
ditions atx= ±L /2. The adsorptive term is characterized by
the constantka, and the adsorption is only possible at the
s1−Cd free sites. Hence, the adsorption rate iskaps1−Cd,
wherep is the partial pressure of the gaseous phase.

The desorption process has a ratekd, that includeskd,0, the
desorption of noninteracting particles, and the corrections
due to the lateral interactions. The strong local bond induced
by the interactionUsxd, corrects the desorption rate askd

=kd,0 expfUsxd /kTg, wherek is Boltzmann constant andT is
the temperature. According to the form we use to introduce
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such an interaction, we are assuming that it is asubstratum
mediatedinteractionf18–20g.

The gradient ofUsxd produces a forceF=−]Usxd /]x, that
affects the adsorbed particles inducing a velocityv=bF,
where b is the mobility sgiven by Einstein’s relationb
=D /kT, with D the diffusion coefficientd. The associated par-
ticle flux is vC. Because the flux is only possible to thes1
−Cd free sites, its form results to be

j = − S D

KT
DCs1 − Cd

]Usxd
]x

,

while the diffusive flux is given by

jdif = − D
]C

]x
.

The evolution equation for the coverage is

]

]t
Csx,td = kaps1 − Cd − kd,0C expfUsxd/kTg

+
]

]x
S D

kT

]Usxd
]x

Cs1 − Cd + D
]C

]x
D . s1d

For the functional form ofUsxd we assume an attractive
sand as indicated earlier, substratum-mediatedd potential
among the particles separated a distancer, that we denote by
usrd. The potential acting on a particle located atr is

Usrd = −E usr − r8dCsr8ddr8. s2d

The integration domain is the whole surface. The function
usrd depends on the nature of the system. If the interaction
radius is small compared with the diffusion length, and the
coverage is not much affected by variations in this radius, we
can approximate

Usrd =E usr − r8dCsr8ddr8 . u0C, whereu0 =E usrddr .

s3d

To simplify the notation we scale the variables as follows:
j=x/Ldif sand jM =L /2Ldifd, with the diffusion lengthLdif
=sD /kd,0d1/2; t= t / td, with td=1/kd,0; and «=u0/kT, repre-
sents the lateral interaction. We also definea=kap/kd,0, char-
acterizing the coverage in equilibrium whenUsxd becomes
zero. The evolution equation forCsj ,td reduces to

]C

]t
= as1 − Cd − C expf− «Cg +

]

]j
Sf1 − C«s1 − Cdg

]C

]j
D .

s4d

This equation may be written as

]C

]t
= fsCd +

]

]j
SDeffsCd

]C

]j
D , s5d

with

fsCd = as1 − Cd − C expf− «Cg

DeffsCd = 1 −C«s1 − Cd. s6d

Hence, this problem may be visualized as a reaction–
diffusion system being the reaction termfsCd and the effec-
tive diffusion coefficientDeffsCd. For some region of the
parametersa and « this system is bistable with two homo-
geneous solution indicating that the adsorbate may be
present in two different coveragef18g. In this region the
effective diffusion coefficient is negative. We worked with
«,0.4, to assure thatDeffsCd.0 always, anda.0.14 in
order to be outside of the bistable region.

B. Multiplicative noise

Equations5d may be written in a variational form as

]C

]t
= −

1

DeffsCd
dVfCg
dCsjd

, s7d

where the potential functionalVfCg

VfCg =E
−jM

jM

djS−E
0

C

dC8 DeffsC8dfsC8d

+
1

2
fDeffsCd]jCg2D , s8d

is a Lyapunov functional for the deterministic dynamics.
The starting point of our stochastic analysis will be Eq.

s5d with the addition of a multiplicative noise. We introduce
it here in anad hocform. However, a realistic analysis will
require to indicate what parameter is the one that fluctuates,
and the resulting associated form for the noise term. We as-
sume that, in the Stratonovich interpretation, it is given by

]C

]t
= −

1

DeffsCd
dVfCg
dCsjd

+ gsCdhsj,td, s9d

whereh is a Gaussian white noise, that is with zero mean
and correlation khsj ,tdhsj ,tdl=2s2dsj−j8ddst−t8d. For
the coefficient of the noise term,gsCd we adopt

gsCd =
1

ÎDeffsCd
, s10d

in order to guarantee that the fluctuation-dissipation relation
is fulfilled f24g. As we are considering the Stratonovich in-
terpretation, the stationary solution of the associated Fokker-
Planck equation may be written asf25g

PstfCg , exps− VefffCg/s2d, s11d

where the effective potentialVefffCg is given by

VefffCg = VfCg − lE
−jM

jM

dj ln DeffsCd. s12d

Here l is a renormalized parameter related tos throughl
=s2/ s2Djd in a lattice discretization, whereDj is the lattice
parameterf25g.

The extreme ofVeff corresponds to thesstationaryd noise-
sustained structuresCst that can be computed from the equa-
tion that results making the first variation ofVeffsCd respect
to C equal to zero, that is
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dVefffCstg = −E
−jM

jM

uDeffsCdh]jfDeffsCd]jcg

+ FeffsCdjdCsjddjuC=Cst
= 0, s13d

where

FeffsCd = fsCd + l
1

DeffsCd2

d

dC
DeffsCd, s14d

is the effective nonlinearity which drives the dynamics of the
noise induced patterns.

As indicated before, we will consider a finite one dimen-
sional system, i.e., limited to the region −jM øjøjM
s−L /2,x,L /2d; and consider parameter’s values that as-
sure a monostable dynamics withDeff.0 sfor «,4.0 and
a.0.14d in absence of noisefsee Fig. 1 and Eq.s6dg. Then
the effective spatial diffusivityDeffsCd induces an effective
bistable dynamics when a multiplicative noise for which the
fluctuation-dissipation relation is fulfilledf24g is addedssee
Fig. 1d. However, forl too small the bistability may even not
appear. This means that a threshold exist beyond which the
dynamics is bistable. The effective diffusion coefficientDeff
vs C is always positive for«,4 and describes a parabola
with a minimum inC=0.5, implying that the effective diffu-
sivity is larger when the coverage departs from this value. In
this case it could be necessary to resort to an extended de-
scription where a multilayer system is consideredf20g. How-
ever, such a case is beyond the scope of this work.

It is worth remarking here that for the deterministic prob-
lem the reaction term is monostablesl=0d while, as we in-
crease the noise intensity, and only due to the effect of noise,
the effective nonlinear termFeff becomes bistablesfor l
larger than a thresholdd. However it is also necessary that the
lateral interaction be present, otherwise the effective nonlin-
ear term will not be bistable.

III. DIFFERENT BOUNDARY CONDITIONS

Here we analyze the patterns arising for three different
boundary conditions. We will consider the case of perfect

sand also imperfectd adsorption at the boundarysDirichletd,
perfect reflectionsNeumannd, and mixed or partially reflect-
ing boundary conditionssalbedod.

A. Dirichlet boundary conditions

The usual case of Dirichlet boundary conditions corre-
sponds to adoptingCs−jMd=CsjMd=a swith a a constantd,
wherea=0 or aÞ0. As is well known, the former situation
corresponds to having a perfect absorber at the boundary,
while the latter corresponds to a case where some source is
introduced at the boundary. We start here assuming the case
with sources at the boundary withCs−jMd=CsjMd=0.5, and
postpone the analysis of the case of perfect absorption.

The patterns that we obtain as solutions, correspond to the
extreme of the effective potentialVefffCg sthat is the maxima
of the probability densityd. In order to obtain their form, we
must snumericallyd solve

d

dj
SDeffsCstd

d

dj
CstD + FeffsCstd = 0, s15d

for a stationary regimen profileCstsjd. This approach allows
us to find both, the stable and unstable solutions. To analyze
their stability we need to calculated2Veff, that defines
a Sturm-Liouville problem, with orthogonality weight
DeffsCstd. From the analysis it results that, forl=0
smonostable dynamicsd we have one stablesCdownd nonho-
mogeneous symmetric pattern that presents a minimum in
the unique root of the nonlineal termffsCdg. Hence, forl
larger than a certain threshold we come to a bistability region
where we found two stable nonhomogeneous symmetric pat-
terns,Cup with a maximum in the upper root of the nonlinear
termFeffsCd, andCdown with a minimum in the lower root of
the same nonlinear term; together withCu, the unstable so-
lution ssaddled. The typical form of these patterns is illus-
trated in Fig. 2.

It is convenient to clarify that the difference between
Cdown with and without noise is due to the fact that the

FIG. 1. sad FeffsCd vs C for a=0.2 and«=3.1. Dashed line for
the reaction term with forl=0.0 smonostabled; dotted line forl
=0.001sstill monostabled, and full line for l=0.005sbistabled.

FIG. 2. Stationary patterns of the problem. We showCup sfull
lined andCdown sdashed lined, both stable patterns; and the unstable
ssaddled Cu sdotted lined; all nonhomogeneous. Here we havel
=lc<0.005, while the other parameters values are the same as in
Fig. 1.
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unique root offsCd=0 changes for effect of the noise. That
is, it is the same pattern modified by the effect of the noise.
However,Cup is a new pattern that is purely induced by the
noise. Figure 3 depicts the stable patterns for different values
of l. We can observe those patterns have a strong depen-
dence on the noise intensityl salso the unstable one, not
shown in the figured. For l too large, the solutionCup is
larger than one, andCdown is below zero, for the centralj
values. This result has no physical meaning, as the coverage
should be normalized to one. In this case, the modifiedssto-
chasticd model does not represent a real physical situation
anymore. It could maybe correspond to a transition from
monolayer to multilayer adsorption as described in Ref.f20g,
that we will not consider here.

Figure 4 showsVefffCstg vs l, evaluated on the different
stationary patternsswe definelc as the value ofl where
VefffCupg=VefffCdowngd. Here we see how the stable solution
Cup is approached by the unstable solutionCu until both
coalesce and onlyCdown survives as the noise intensitysld
threshold is reached from above. These results induce to
think on the possibility of stochastic resonance between the
indicated noise-induced structuresf26g. We have analyzed
this possibility, introducing a weak external signal to rock the
potential f26g, and found that the typical maximum in the
curve of the signal-to-noise ratio as a function of parameterl
results to be too smalls,10−10d making irrelevant its study.

Let us now go back to the caseCs−jMd=CsjMd=0, cor-
responding to have a perfect absorber at the boundary. In this
case, forl=0 smonostable dynamics without noised, as be-
fore, we have a single pattern, but showing a maximumsat
the unique root of the nonlinear termd instead of a minimum
as in the previous case. Clearly this is due to the change of
the boundary condition. Hence, in the region where the dy-
namics was previously bistablesby effect of the noised, even
for larger values ofl there is also only one pattern, different
from the one arising without noise, since now the maximum

corresponds to the lower root of the nonlinear term with
noise sit cames from the same previous root that has been
modified by the noised. We observe that in this case there is
no phase-transition-like phenomenon induced by noise. The
other pattern that arises in the previous case, corresponding
to the other root—“the upper one”—that would indicate a
phase transition induced by noise, is not a solution.

B. Neumann boundary conditions

Neumann boundary conditions, defined by

]

]j
Csj = − jMd =

]

]j
Csj = jMd = 0,

corresponds to the case where the current through the bound-
aries is zero, that is perfect reflection. In this case, without
noise we have as solution a stable homogeneous pattern with
a value given by the root offsCd=0. When the multiplicative
noise is included we find two new stable homogeneous so-
lutions, now with values at two of the roots ofFeffsCd=0
fthose where the slope ofFeffsCd is negativeg. There is also
another rootfwhere the slope ofFeffsCd is positiveg, corre-
sponding to a homogeneous saddle.

Again in this case, the homogeneous pattern correspond-
ing to the lower root ofFeffsCd is the same solution that for
the case without noise, again modified by effect of the noise,
while the one corresponding to the upper root only exists due
to the presence of the noise.

C. Albedo boundary conditions

These conditions correspond to

]

]j
Csj = − jMd = KCs− jMd,

FIG. 3. Stationary patterns of the problem. We showCup sfull
lined andCdown sdashed lined, both nonhomogeneous stable patterns
for different values ofl, increasing from bottom to topCup and
from top to bottomCdown sl=0.0015, 0.0020, 0.0030, 0.0040,
0.0050, and 0.0060d; while the other parameter values are the same
as in Fig. 1.

FIG. 4. Nonequilibrium potentialVefffCstg, as a function ofl,
evaluated on the stationary patterns, full line corresponds toCup,
dashed line corresponds toCdown while the dotted line corresponds
to Cu. The arrow indicates the point whereVefffCupg=VefffCdowng,
corresponding tol=lc<0.005.
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]

]j
Csj = jMd = − KCsjMd,

where K is the albedo parameter, assumed positive. When
K=0 we have Neumann’s conditions; while forK=`, we
recover Dirichlet’s conditionsfCs−jMd=CsjMd=0g.

Here we explore the possible solutions varyingK between
both extremes, 0,K,`. The stable solutions are shown in
Fig. 5. We see that for values ofK smaller than a critical
value sKc.0.031d, there are two stable patterns,Cdown and
Cup, with a maximum that corresponds with each one of the
two roots ofFeffsCd=0, those where the slope is negative.
Hence, aboveKc, the critical value ofK, only one stable
pattern is foundsCdownd, with a maximum corresponding to
the smaller of the roots ofFeffsCd=0. As before,Cup is in-
duced by the noise whileCdown is only modified by it.

We observe that a phase transition induced by noise only
exists forK larger than the critical valueKc. In Fig. 6 the
stable solutions forK=0.03 with and without noise are
shown. While for the first case two patterns exist, for the
second there is only one. The same is shown forK=0.05 in
Fig. 7 where, for both cases, with and without noise, only
one pattern exists.

IV. CONCLUSIONS

We have studied a simple deterministic model able to de-
scribe qualitatively pattern formation in a monolayer of ad-
sorbed particles on surfaces with lateral attractive interac-
tions f19,20g. This model leads to the formation of interfaces
separating phases with different localshomogeneousd cover-
age for certain region of parametersf19g. We have chosen
the parameters’s values outside this region, where the system
has only a monostable solutionshomogeneous coveraged. In
order to study the interplay between noise and boundary con-

ditions on the possibility of noise induced pattern formation,
we add a multiplicative noise in such a way that a
fluctuation-dissipation relation is fulfilledf24g, and found the
exact stationary solution of the Fokker-Planck equation cor-
responding to such a system.

We have explored different boundary conditionssDirich-
let, Neumann, and the more general albedod for the modified
model and have shown that when a source is introduced in
the border, or more generally, when in addition we assume
that the current is different from zerosalbedo parameter be-
low a critical valued a phase transition induced by noise oc-
curs. In other words, when the multiplicative noise intensity
does not exceed a certain critical value, the system has a
unique stable pattern as solution. But, when the multiplica-
tive noise intensity exceeds the critical value, in addition to
the previous patternsmodified by the noised, the system has

FIG. 5. Stationary stable patterns of the problem for different
values ofK. We showCup saboveC=0.5d with K increasing down-
wardssK=0, K=0.01, andK=0.03, respectivelyd; andCdown sbelow
C=0.5d with K increasing downwards toosK=0, K=0.01, K
=0.03, K=0.05, andK=`, respectivelyd. Here we havel=lc

<0.005, while the other parameters values are the same as in Fig. 1.

FIG. 6. Stationary stable patterns of the problem forK=0.03,
with and without noise. We showCup saboveC=0.5d and Cdown

sbelow C=0.5d for l=lc<0.005 sfull lined and Cdown for l=0.
sdashed lined. The other parameters values are the same as in Fig. 1.

FIG. 7. Stationary stable patterns of the problem forK=0.05,
with and without noise. We showCdown for l=lc<0.005sfull lined
andCdown for l=0. The other parameters values are the same as in
Fig. 1.
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another stable pattern as solution, with a nonhomogeneous
sunstabled saddle separating both stable ones. It is worth re-
marking here that the second pattern arises abruptly, resem-
bling a transition of the of first order type. Moreover, it is the
multiplicative noise that induces this second patternsas well
as the unstable oned. As indicated before, without multipli-
cative noise the solution corresponds to a unique pattern. We
note that the necessary noise intensity is very small. In the
other extreme, when the noise intensity is too large, the cov-
erage escapes from the intervals0, 1d, and the results of the
applied monolayer model loses its physical meaning. This
case could correspond to a situation where it is necessary to
resort to an extended description where a multilayer system
is consideredf20g. However, such a case was beyond the
scope of this work.

To better visualize the indicated phase transition, we con-
sider again Fig. 5 and in Fig. 8 we plotHfCg vs K, whereH
is some measure of the pattern size. Here we choose

HfCg =E
−L/2

L/2

dxCsxd.

It is apparent that forK.Kc,0.031, the pattern indicated by
Cup disappears abruptly, while the other stable pattern,Cdown,
remains. This indicates a kind of first order phase transition
sor “subcritical-like bifurcation”d.

An interesting point to be discussed is the possibility of
carrying out an experimental observation of the above indi-
cated phenomenon. It is known that up to a certain point it is
possible both to control and vary the boundary conditions in
chemical pattern forming experimentsf27g, as well as to in-
troduce fluctuations in a controlled wayf23,28g. However, if

a too fine tuning control is required by the above indicated
interplay between noise and boundary conditions on noise
induced pattern formation, it could be beyond the possibili-
ties of such experimental systems. Another—maybe more—
accessible possibility is to consider electronic experimental
setups as has been used, for instance, for studying pattern
formation and propagation, as well as some noise induced
phenomenaf29g.
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